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ABSTRACT

A vector finite element solver is used to calculate
the phase shift in uniform axially-magnetized gyro-
magnetic waveguides. Ferrite materials are charac-
terized in the solver using standard material data,
the applied field and the frequency. Calculations are
compared with experimental results for two typical
waveguide cross-sections: a quadrupally-ridged Fara-
day Rotation section and a reciprocal Reggia-Spencer
section,

INTRODUCTION

It is well understood that waveguides containing ax-
ially magnetized ferrite materials are often used as
phase shifters at microwave frequencies [1]. A clas-
sic non-reciprocal arrangement is based on the Fara-
day rotation principle. These type of phase shifters
are constructed using waveguide cross-sections which
support degenerate, orthogonal, linearly-polarized
modes. Analysis and design of both Faraday rotation
phase shifters and related dual-mode phase shifters is
described in the literature [1,9]. In waveguides with
less than four-fold symmetry, a suppressed-rotation
mechanism has been described and employed to ob-
tain reciprocal phase shifters [5,6]. A CAD approach
to the specification of waveguides for phase shifters
requires a numerical method which calculates the
propagation constant at the required frequency. A
vector-field analysis is necessary to model the hybrid
modes which occur in waveguides when the tensor
permeability used to characterize the ferrite media is
introduced. In addition, for the modelling of practical
geometries it is preferable to specify the ferrite char-
acteristics in terms of the material parameters and
the applied magnetic field instead of the tensor per-
meability entries (k,p) commonly used in analytical
solutions of gyromagnetic waveguides [1].

The Finite Element (FE) Method is well suited
to the analyscic of waveguides with arbitrary geome-
try. A FE formulation in terms of the vector magnetic
field is used here to calculate the propagation con-
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stant and modal fields at a specified frequency. Spu-
rious modes are avoided through the use of covariant-
projection elements {8]. The formulation results in
a generalized eigenvalue matrix problem where the
propagation constant is the eigenvalue. To validate
this FE formulation, axi-symmetric geometries with
known solutions were recently analysed and the re-
sults are described elsewhere [2]. In this paper the
application to more practical waveguide geometries
such as those used in phase shifters are considered.
Two aspects of the original formulation have been ex-
tended and will be described: data input in terms of
experimental parameters instead of the components
of the tensor permeability; identification of symme-
try planes and specification of appropriate boundary
conditions. Results will be presented for two different
sorts of phase shifters; Faraday rotation sections and
Reggia-Spencer sections.

FINITE ELEMENT FORMULATION

The time-harmonic magnetic field within a waveg-
uide containing gyromagnetic media satisfies the vec-
tor wave equation

V x (;'V xH) - k§p,H=0 (1)

where kg is the wavenumber of free space. It is as-
sumed here that the waveguide is uniform in the z di-
rection, sop all field components have a z-dependence
of e~98% where B is the phase constant. To evaluate
the phase constants and the modal field patterns at
a specified frequency, the stationary point of the fol-
lowing functional is found

F(H') = /{E;llvt x Hy'|? — kgHL"™ - iy L+
S
82 [e;1|th,' FH? - k(z,Hzl*;Lzszl] } s  (2)

In this equation both the magnetic field and tensor
permeabilty have been split into transverse and axial
parts. The magnetic fields H’ are transformations of
the magnetic field H described in [4,5]. The finite el-
ement solution of (2) is obtained by substituting the
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trial functions of the meshed region into the func-
tional equation. The first variation of the functional
is then set to zero and the solution is calculated from
the resulting generalized eigenvalue matrix equation
of the form

[A]F = 3[B|H (3)

where, in general, the n x n matrices [A] and [B]
are Hermitian and H is an n component vector of
unknown field coeflicients. The eigenvalue A2 corre-
sponds to the phase constant 32.

FERRITE CHARACTERISTICS
Phase constant calculations in ferrite waveguides are
often presented in terms of a £/p parameter derived
from the permeability tensor. This parameter is cho-
sen for mathematical convenience. In general it is a
function of the frequency, applied field and magneti-
sation and so it is not easy to relate the resulting
characteristics to measured results. For waveguide
design purposes, phase constant calculations in terms
of either frequency or applied field are more useful.
In ferrites which are saturated the relationship
between the tensor entries and the material charac-
teristics is well-known [1]. The value of the mag-
netisation is known and for any applied field and fre-
quency the tensor components can be calculated. Dif-
ficulties arise for partially magnetized ferrites where
the value of the magnetisation for a particular applied
field is not known. A set of formulae suitable for all
magnetisations higher than the remanence level have
been proposed by Hansson and Filipsson [3]. Assum-
ing a tensor of the form

po—j 0
fr=|jr pn 0 (4)
0 0 Hzz

where the applied dc magnetic field is along the z-
axis. The values of the tensor components are [3]

—pS/2

Hzz =/"(1)
772 Ho M

= 1- 3/2 _—
p=po+ (L - po)p T GEE =

" (nHo)? — w?

where w is the frequency of operation, Hj is the inter-
nal field and 7 is the gyromagnetic ratio. The variable
p is the ratio of the magnetisation M to the satura-
tion magnetisation M, [3]

(3)

K

M 1
P=ar = a1+ (1 —a1) {coth(azHo) "l }

where a; and ay are constants derived from the hys-
tersis curve of the material: a; is equal to the ratio of
the remanent and saturation magnetisations and a2
is related to the slope of dB/dH|g=o. In eqn. (4), o
is the scalar permeability in the demagnetized state

1 2 [ (aM)?
#0—§+§ 1 w?

where the effects of the anisotropy field have been ne-
glected. The values predicted by these formulae agree
reasonably well with measured data for a range of fer-
rites [3]. These formulae have been incorporated into
the FE solver so that the components of the tensor
permeability are calculated from the material charac-
teristics for any specified applied field and frequency.

SYMMETRY CONDITIONS

Vector finite element solutions of waveguide cross-
sections is a computationally expensive procedure.
Reductions in the size of the meshed region of the
waveguide cross-section can lead to significant sav-
ings in computer time. In waveguide geometries with
materials characterized by scalar material properties,
mirror planes of symmetry are used to reduce the size
of the meshed region. The mirror planes are modelled
as electric or magnetic walls. Waveguides with axi-
ally magnetized ferrite media do not support mirror
symmetry but may have rotational symmetry. These
rotational planes of symmetry relate the vector field
components along two azimuthal planes in the waveg-
uide to each other

H(r,0) = m-H(r,6 + ¢) (6)

where ¢ is the angle of rotation and m is a 3 x 3
transformation matrix whose values are defined by
the symmetry of the required modal solution. Pe-
riodic boundary conditions have been implemented
in the finite element solver to take advantage of this
rotational symmetry. These type of boundary con-
ditions were used for the axi-symmetric geometries
described in [2] and are employed here for more gen-
eral geometries. Introducing these type of boundary
conditions does not alter the symmetry of the matrix
nor does it involve evaluating any line integrals over
the mesh boundaries.

PHASE SHIFT CALCULATIONS

Faraday-rotation sections may be constructed using
an axially magnetized ferrite rod centrally positioned
in a circular waveguide. When the ferrite is magne-
tized, the circular polarized modes in the waveguide
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travel at different phase velocities. Over a length
of uniform waveguide L the Faraday angle of rota-
tion of the propagating linearly-polarized mode is
¢ = (B+ — B-)/2L. For wide-band applications, a
nearly constant rotation with frequency is required.
One way of achieving this is to lower the cut-off fre-
quency of the propagating mode, thereby reducing
the effect of dispersion.

A typical quadrupally-ridged Faraday rotation
cross-section is illustrated in fig. 1a. This type of ge-
ometry has been proposed by Chait and Sakiotis [4]
among others, to improve the bandwidth characteris-
tics of Faraday rotator sections. Phase shift calcula-
tions were obtained using a mesh of about 20 elements
defined over a quarter section of the waveguide. To
calculate the phase constant of the dominant HE1q 1
circularly-polarized modes, the relationship between
the components in eqn. (6) with the matrix

0 =+ 0
m=| 0 0
0 0 1

is used to specify the boundary condition. Each mesh
was solved twice to obtain the positive and negative
circularly-polarized modes. Figure 2 shows the cal-
culated phase shift of the Faraday rotator section in
fig. la, with and without ridges. There is a signifi-
cant improvement in the bandwidth when the ridges
are in place. Measured data for the improvement in
a 90° rotator based on a similar geometry described
in [4] is also shown in fig. 2 for comparison. The re-
duced phase shift in the measured results may be due
to dielectric loading which was possibly used together
with the ridges to enhance the bandwidth character-
istics of the rotator. In addition, the ferrite rod is
often tapered at both ends to improve matching. No
allowance was made for this in the finite element cal-
culations where a uniform rod was assumed.

Rectangular waveguides with a centrally posi-
tioned ferrite rod are used as variable phase shifters.
This type of phase shifter, first proposed by Reggia
and Spencer [5], is usually operated at low applied dc
fields where the differential phase shift varies rapidly
with applied dc field. One well-known model for the
operation of these devices is a coupled mode approach
based on the the modes in a similar waveguide with
a ferrite slab [6]. Comparison between experimen-
tal results and coupled mode results from [6] and FE
calculations are shown in fig. 3. The presence of the
ferrite implies that a quarter section of the geometry
is not sufficient to obtain a solution and half the

geometry must be modelled. The vertical plane of

471

symmetry in fig. 1b was used with a boundary condi-
tion specified by eqn. (6) with m equal to a unit ma-
trix. Each section was solved twice at each frequency;
once with zero applied field and next with a small
applied field. Calculations for the variation in phase
shift with applied field for different sized ferrites are
shown in fig. 4. The dramatic change in phase shift
for different-sized ferrites is typical of these class of
phase shifters [5,6]. For low values the applied field,
the FE results may not correlate exactly with experi-

mental values because of the limitations of the model
used to characterize the ferrite [3]. However the re-
sults in figs. 3 and 4 indicate that the FE solver mod-
els the behaviour of these partially-magnetized phase
shifters reasonably well.

CONCLUSIONS

A three-component vector finite element solver has
been used to calculate phase constants in waveguides
containing axially-magnetized ferrite media. Ferrite
characteristics are specified in terms of the applied
field, frequency and material characteristics including
saturation magnetisation and data from the hystersis
curve. Periodic boundary conditions are used to re-
duce the size of the meshed region. Phase shifts have
been calculated for two examples, a Reggia-Spencer
phase shifter and a ridged Faraday rotation section
and in each case comparisons are made with mea-
sured data in the literature.
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Figure 1b

Fig. 1: Geometry of phase shifter cross-sections
(1a):Quadrupally-ridged Faraday rotator: a = 11.944
mm, b = 6.426 mm, ¢ =t = 3.175 mm. Waveguide is
air-filled except for hat-ched region which is TT-390
ferrite: M, = 2150G, Hy. = 384 Oe, and €5 = 12.7.
(1b): Reggia-Spencer phase shifter: b/a = 0.444,
hfa = 0.222. Waveguide is air-filled except for
hatched region which is ferrite: ko = 2.9, e = 13.
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Fig. 2: Rotation over a Faraday Rotation section,
with and without ridges. The length of the section is
50.8 mm.
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Fig. 3: Variation in differential phase shift with fre-
quency. The coupled mode resulis were calculated
for b/h = 1. The finite element method results were
obtained using the geometry in fig. 1b with Hz, = 0.0
and Hz. =1 Oe.
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Fig. 4: Finite element calculations for the variation
in differential phase shift with applied dc magnetic
field for different ferrite widths. kpa = 4.4



