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ABSTRACT

A vector finite element solver is used to calculate

the phase shift in uniform axially-magnetized gyro-

magnetic waveguides. Ferrite materials are charac-

terized in the solver using standard material data,

the applied field and the frequency. Calculations are

compared with experimental results for two typical

waveguide cross-sections: a quadrupally-ridged Fara-

day Rotation section and a reciprocal Reggia-Spencer

section.

INTRODUCTION

It is well understood that waveguides containing ax-

ially magnetized ferrite materials are often used as

phase shifters at microwave frequencies [1]. A clas-

sic non-reciprocal arrangement is based on the Fara-

day rotation principle. These type of phase shifters

are construct ed using waveguide cross-sections which

support degenerate, orthogonal, linearly-polarized

modes. Analysis and design of both Faraday rotation

phase shifters and related dual-mode phase shifters is

described in the literature [1,9]. In waveguides with

less than four-fold symmetry, a suppressed-rotation

mechanism has been described and employed to ob-

tain reciprocal phase shifters [5,6]. A CAD approach

to the specification of waveguides for phase shifters

requires a numerical method which calculates the

propagation constant at the required frequency. A

vector-field analysis is necessary to model the hybrid

modes which occur in waveguides when the tensor

permeability used to characterize the ferrite media is

introduced. In addition, for the modelling of practical

geometries it is preferable to specify the ferrite char-

acteristics in terms of the material parameters and

the applied magnetic field instead of the tensor per-

meability entries (K, p) commonly used in analytical

solutions of gyromagnetic waveguides [1].

The Finite Element (FE) Method is well suited

to the analy~is of waveguide~ with arbitrary geome-

try. A FE formulation in terms of the vector magnetic

field is used here to calculate the propagation con-
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stant and modal fields at a specified frequency. Spu-

rious modes are avoided through the use of covariant-

projection elements [8]. The formulation results in

a generalized eigenvalue matrix problem where the

propagation constant is the eigenvalue. To validate

this FE formulation, axi-symmetric geomet ties with

known solutions were recently analysed and the re-

sults are described elsewhere [2]. In this paper the

application to more practical waveguide geometries

such as those used in phase shifters are considered.

Two aspects of the original formulation have been ex-

tended and will be described: data input in terms of

experimental parameters instead of the components

of the tensor permeability; identification of symme-

try planes and specification of appropriate boundary

conditions. Results will be presented for two different

sorts of phase shifters; Faraday rotation sections and

Reggia-Spencer sections.

FINITE ELEMENT FORMULATION

The time-harmonic magnetic field within a waveg-

uide containing gyromagnetic media satisfies the vec-

tor wave equation

V x (C;lV x H) – k&H = O (1)

where kO is the wavenumber of free space. It is as-

sumed here that the waveguide is uniform in the z di-

rection, sop all field components have a z-dependence

of e–~~z where /1’ is the phase constant. Tc) evaluate

the phase constants and the modal field patterns at

a specified frequency, the stationary point Of the fa-
llowing functional is found

JI’(H’) = {#lV~ X H~’12 – k~Ht’* . ji~~H~’+
s

/32 [#lV,Hz’ + Ht’12 - k:Hz’* Pz.q}~s (2)

In this equation both the magnetic field and tensor

permeability have been split into transverse and axial

parts. The magnetic fields H’ are transformations of

the magnetic field H described in [4,5]. The finite el-

ement solution of (2) is obtained by substituting the
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trial functions of the meshed region into the func-

tional equation. The first variation of the functional

is then set to zero and the solution is calculated from

the resulting generalized eigenvalue matrix equation

of the form

[A]= = A2[B]77 (3)

where, in general, the n x n matrices [A] and [B]

are Hermitian and ~ is an n component vector of

unknown field coefficients. The eigenvalue A’ corre-

sponds to the phase constant /?2.

FERRITE CHARACTERISTICS

Phase constant calculations in ferrite waveguides are

often presented in terms of a K/p parameter derived

from the permeability tensor. This parameter is cho-

sen for mathematical convenience. In general it is a

function of the frequency, applied field and magneti-

sation and so it is not easy to relate the resulting

characteristics to measured results. For waveguide

design purposes, phase constant calculations in terms

of either frequency or applied field are more useful.

In ferrites which are saturated the relationship

between the tensor entries and the material charac-

teristics is well-known [1]. The value of the mag-

netisation is known and for any applied field and fre-

quency the tensor components can be calculated. Dif-

ficulties arise for partially magnetized ferrites where

the value of the magnetisation for a particular applied

field is not known. A set of formulae suitable for all

magnetisations higher than the remanence level have

been proposed by Hansson and Filipsson [3]. Assum-

ing a tensor of the form

[1

P –j~ o
A-= j~ p 0 (4)

00 p%%
where the applied dc magnetic field is along the z-

axis. The values of the tensor components are [3]

~zz =P;-P5’2

q2HoMp =/Lo + (1 – PO)P3’2 + (qj70)2 – ~z

K = (vH;;’: ~’ (5)

where w is the frequency of operation, HO is the inter-

nal field and q is the gyromagnetic ratio. The variable

p is the ratio of the magnetisation M to the satura-

tion magnetisation ill= [3]

p=~=
{

al + (1 – al) coth(a2Ho) – --&
8 }

where al and a2 are constants derived from the hys-

tersis curve of the material: al is equal to the ratio of

the remanent and saturation magnetisations and a’

is related to the slope of d13/dHl~=o. In eqn. (4)? PO

is the scalar permeability in the demagnetized state

/m=:+;l–@J)2

where the effects of the anisotropy field have been ne-

glected. The values predicted by these formulae agree

reasonably well with measured data for a range offer-

rites [3]. These formulae have been incorporated into

the FE solver so that the components of the tensor

permeability are calculated from the material charac-

teristics for any specified applied field and frequency.

SYMMETRY CONDITIONS

Vector finite element solutions of waveguide cross-

sections is a computationally expensive procedure.

Reductions in the size of the meshed region of the

waveguide cross-section can lead to significant sav-

ings in computer time. In waveguide geometries with

materials characterized by scalar material properties,

mirror planes of symmetry are used to reduce the size

of the meshed region. The mirror planes are modelled

as electric or magnetic walls. Waveguides with axi-

ally magnetized ferrite media do not support mirror

symmetry but may have rotational symmetry. These

rotational planes of symmetry relate the vector field

components along two azimuthal planes in the waveg-

uide to each other

H(T, 6) = m. H(T, 0 + @) (6)

where # is the angle of rotation and m is a 3 x 3

transformation matrix whose values are defined by

the symmetry of the required modal solution. Pe-

riodic boundary conditions have been implemented

in the finite element solver to take advantage of this

rotational symmetry. These type of boundary con-

ditions were used for the axi-symmetric geometries

described in [2] and are employed here for more gen-

eral geometries. Introducing these type of boundary

conditions does not alter the symmetry of the matrix

nor does it involve evaluating any line integrals over

the mesh boundaries.

PHASE SHIFT CALCULATIONS

Faraday-rotation sections may be constructed using

an axially magnetized ferrite rod centrally positioned

in a circular waveguide. When the ferrite is magne-

tized, the circular polarized modes in the waveguide
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travel at different phase velocities. Over a length

of uniform waveguide L the Faraday angle of rota-

tion of the propagating linearly-polarized mode is

# = (P+ – @-)/2L. For wide-band applications> a
nearly constant rotation with frequency is required.

One way of achieving this is to lower the cut-off fre-

quency of the propagating mode, thereby reducing

the effect of dispersion.

A typical quadrupally-ridged Faraday rotation

cross-section is illustrated in fig. la. This type of ge-

ometry has been proposed by Chait and Sakiotis [4]

among others, to improve the bandwidth characteris-

tics of Faraday rotator sections. Phase shift calcula-

tions were obtained using a mesh of about 20 elements

defined over a quarter section of the waveguide. To

calculate the phase constant of the dominant HE+l,l

circularly-polarized modes, the relationship between

the components in eqn. (6) with the matrix

‘=(+ ‘: !

is used to specify the boundary condition. Each mesh

was solved twice to obtain the positive and negative

circularly-polarized modes. Figure 2 shows the cal-

culated phase shift of the Faraday rotator section in

fig. la, with and without ridges. There is a signifi-

cant improvement in the bandwidth when the ridges

are in place. Measured data for the improvement in

a 90° rotator based on a similar geometry described

in [4] is also shown in fig. 2 for comparison. The re-

duced phase shift in the measured results maybe due

to dielectric loading which was possibly used together

with the ridges to enhance the bandwidth character-

istics of the rotator. In addition, the ferrite rod is

often tapered at both ends to improve matching. No

allowance was made for this in the finite element cal-

culations where a uniform rod was assumed.

Rectangular waveguides with a centrally posi-

tioned ferrite rod are used as variable phase shifters.

This type of phase shifter, first proposed by Reggia

and Spencer [51,is usually operated at low applied dc

fields where the differential phase shift varies rapidly

with applied dc field. One well-known model for the

operation of these devices is a coupled mode approach

based on the the modes in a similar waveguide with

a ferrite slab [6]. Comparison between experimen-

tal results and coupled mode results from [6] and FE

calculations are shown in fig. 3. The presence of the

ferrite implies that a quarter section of the geometry

is not sufficient to obtain a solution and half the

geometry must be modelled. The vertical plane of

symmetry in fig. lb was used with a boundary condi-

tion specified by eqn. (6) with m equal to a unit ma-

trix. Each section was solved twice at each frequency;

once with zero applied field and next with a small

applied field. Calculations for the variation in phase

shift with applied field for different sized ferrites are

shown in fig. 4. The dramatic change in phase shift

for different-sized ferrites is typical of these class of

phase shifters [5,6]. For low values the applied field,

the FE results may not correlate exactly with experi-

mental values because of the limitations of tkle model

used to characterize the ferrite [3]. However the re-

sults in figs. 3 and 4 indicate that the FE solver mod-

els the behaviour of these partially-magnetized phase

shifters reasonably well.

CONCLUSIONS

A three-component vector finite element solver has

been used to calculate phase constants in waveguides

containing axially-magnetized ferrite media. Ferrite

characteristics are specified in terms of the applied

field, frequency and material characteristics including

saturation magnetisation and data from the hystersis

curve. Periodic boundary conditions are used to re-

duce the size of the meshed region. Phase shifts have

been calculated for two examples, a Reggia-Spencer

phase shifter and a ridged Faraday rotation section

and in each case comparisons are made with mea-

sured data in the literature.
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Fig. 1: Geometry ofphase shifter cross-sections

(la):Quadrupally-ridged Faraday rotator: a = 11.944

mm, b = 6.426 mm, c = t = 3.175 mm. Waveguide is

air-filled except for hat-ched region which is TT-390

ferrite: Afg = 2150G, 12dC = 384 Oe, and Cf = 12.7.

(lb): Reggia-Spencer phase shifter: b/a = 0.444,

h/a = 0.222. Waveguide is air-filled except for
hatched region which is ferrite: kma = 2.9, ef = 13.
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Fig. 3: Variation in differential phase shift with fre-

quency. The coupled mode results were calculated

for b/h = 1. The finite element method results were

obtained using the geometry in fig. lb with ~dc = 0.0

and Hdc = 1 Oe.
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Fig. 2: Rotation over a Faraday Rotation section, Fig. 4: Finite element calculations for the variation

with and without ridges. The Iength of the section is in differential phase shift with applied dc magnetic

50.8 mm. field for different ferrite widths. koa == 4.4
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